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ABSTRACT 
The spectral distribution of music audio has an important influence on listener perception, but large-scale charac-

terizations are lacking. Therefore, the long-term average spectrum (LTAS) was analyzed for a large dataset of 

popular music. The mean LTAS was computed, visualized, and then approximated with two quadratic fittings. 

The fittings were subsequently used to derive the spectrum slope. By applying harmonic/percussive source sepa-

ration, the relationship between LTAS and percussive prominence was investigated. A clear relationship was 

found; tracks with more percussion have a relatively higher LTAS in the bass and high frequencies. We show how 

this relationship can be used to improve targets in automatic equalization. Furthermore, we assert that variations 

in LTAS between genres is mainly a side-effect of percussive prominence. 

1 Introduction 

1.1  Long-term average spectrum in music 

Musical instruments produce a wide range of spec-

tra [1]. When instrumental performances are mixed 

together in a music recording, the frequency distribu-

tion of that recording will be determined by the in-

cluded instruments, the performance (e.g. the dynam-

ics) of the musicians [2], and the technical choices, 

such as the equalization made by e.g. the recording 

and mixing engineer. The spectral distribution affects 

listener perception. As an example, mixing engineers 

generally associate descriptive words with different 

frequencies, e.g., presence = 4-6 kHz, brilliance = 6-

16 kHz [3].  

By measuring the long-term average spectrum 

(LTAS) of a musical signal, it is possible to get a com-

pact representation that mediates some of these per-

ceptual qualities of the mix. Due to variations in e.g. 

instrumentation, the LTAS can be expected to vary 

somewhat between songs. The average LTAS across 

different recordings, the extent of the variations in 

LTAS, and the factors behind the variations, should 

all be useful knowledge in audio engineering and to 

applications in automatic equalization. 

1.2  Methodology of earlier studies 

The frequency spectrum of music has been studied 

previously, however, often for so small datasets and 

with such wide-ranging methodologies that compari-

sons are difficult to make. An early study that ana-

lyzed the effect of the bandwidth of the filters used a 

small dataset filtered with octave-spaced bands [4]. 

Another study used 51 mel scale filter bands [5]. Ben-

jamin [6], studied peak and RMS spectra for a dataset 

of 22 tracks with one-third octave bands. A few ex-

cerpts of popular music were also analyzed with one-

third octave bands by the British Broadcasting Cor-

poration [7]. The study closest to ours is one by 

Pestana et al. [8], who analyzed the LTAS of 772 

commercial recordings, and connected the results to 

production year and genre.  

One type of application that could benefit from LTAS 

analysis of big datasets is automatic equalization in 

mixing and mastering. The field is fairly new, with 

researchers trying out different techniques and focus-

ing on different aspects. One example is to equalize 
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with the goal of achieving equal perceptual loudness 

for every frequency band across every multi-track [9]. 

In another implementation, a simple machine learning 

model was trained, based on listener input, to equalize 

isolated sounds [10]. In [11], the mean LTAS com-

puted in [8] was smoothed with a moving average fil-

ter, and an IIR filter developed to match this curve 

during equalization. A good overview of methods and 

challenges for automatic mixing is given in [12]. 

1.3  Relation between LTAS and the level of 
the percussion 

In a previous study of LTAS in commercial record-

ings, differences between genres were analyzed [8]. 

One of the main findings was that genres such as hip-

hop, rock, pop and electronic music had louder low 

frequencies (up to 150 Hz) than genres such as jazz 

and folk music. The same relationship was evident 

also for the high frequencies (5 kHz and above), with 

hip-hop, rock, pop and electronic music being the 

loudest. The differences in the mean LTAS were 

clear: some genres have a (relatively) louder low-end 

and high-end of the spectrum, whereas other genres 

such as jazz and folk music generally have a (rela-

tively) higher sound level in the mid frequencies. 

Similar differences were found between popular mu-

sic and opera music in a smaller study [13].  

 

Why is this? Although certain genres have somewhat 

stylistic preferences with regards to the LTAS (a 

prime example being the heavy bass in reggae), mas-

tering engineers generally try to keep the “symphonic 

tonal balance” as a basic reference for most pop, rock, 

jazz and folk music [14]. Could there then be some-

thing else than the general genre that give rise to the 

differences in LTAS? Given that genres that were 

found to have a higher sound level in the low end and 

high end of the spectrum have more emphasis on 

rhythm, the relative level of the rhythm instruments 

seems to be a relevant factor. In this study, we will 

explore the relationship between the sound level of 

the percussive instruments in a musical mixture and 

the LTAS. 

1.4  Applications of LTAS analysis 

A well-balanced frequency spectrum is an important 

aspect of a mix [15] and something that both mixing 

engineers and mastering engineers try to achieve. 

There are some guidelines that can be used as a start-

ing point: music generally exhibits a dip in energy to-

ward higher frequencies. This spectrum slope has 

been estimated across genre to be approximately 

5 dB/octave on average [8]. However, the slope 

steepens for higher frequencies. It would therefore be 

interesting to study the characteristics of the slope in 

finer detail. There are many factors (such as the in-

strumentation previously mentioned) that must be 

considered to achieve an appropriate equalization. As 

acknowledged by audio engineer Neil Dorfsman, it is 

common to use spectral analysis and comparisons 

with reference mixes during mixing [8]. Reference 

mixes are mixed tracks (often successful commercial 

recordings) that represent a target, e.g., for a desirable 

spectral balance. The choice of reference tracks is of-

ten adapted to the source material being mixed [15]. 

For example, when mixing a track with no drums, it 

is beneficial to use reference tracks without drums. 

 

Mixing engineers can use a few tracks as reference 

points when adjusting the frequency balance of the 

mix, but with the availability of large datasets of mu-

sic recordings, it is possible to analyze the frequency 

spectrum of thousands of songs. The mean LTAS of 

these songs can be used as a target spectrum [11], and 

the processed mix can be altered to better coincide 

with the LTAS of the target. The usefulness of the tar-

get spectrum should increase if it is based on record-

ings with a similar instrumentation as the processed 

mix, a strategy that would mimic how engineers 

chooses their reference tracks. A successful system 

will therefore need to disentangle the factors (such as 

the instrumentation) that has an effect on LTAS, and 

then take these factors into account when establishing 

an appropriate target LTAS. In this study, we will try 

to use information about the level of the percussion in 

the tracks to achieve better targets. 

1.5  Outline of the article 

In Section 2 we give a summary of the dataset (Sec-

tion 2.1), describe the signal processing used to cal-

culate the LTAS of each track (Section 2.2) and com-

pute the amount of percussion (Lperc) in the tracks 

(Section 2.3). The mean and variance in LTAS across 

the dataset is explored in Section 3.1, and in Section 

3.2 an equation for the mean LTAS is computed and 
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used to derive the spectrum slope, including its vari-

ation across frequency. In Section 4 we relate Lperc to 

LTAS, and find a frequency range where the spec-

trum slope is the same regardless of the amount of 

percussion. In Section 5 we show that LTAS targets 

for automatic equalization can be improved for low 

and high frequencies by incorporating information 

about percussive prominence. In Section 6, the differ-

ent findings of the study are discussed.  

2 Data and Signal Processing 

2.1  Dataset 

We used 12345 tracks of popular music in the study. 

These were selected from a slightly bigger dataset of 

12792 tracks by excluding monophonic songs and 

songs with a playing time longer than 10 minutes. The 

tracks were chosen mainly from artists that have 

made a significant impact in popular music. Further-

more, artists that use a wide variation in the amount 

of percussion in their recordings were prioritized. The 

latter condition resulted in a somewhat larger focus 

on folk pop music. The artists with the largest number 

of tracks in the whole dataset were Bob Dylan, Neil 

Young, Bonnie ‘Prince’ Billy, The Beatles and Bright 

Eyes. Tracks had been mastered or remastered for the 

compact disc (CD) format. 

 

Some of the analyzed tracks had previously been con-

verted to the MP3 format. This was convenient due to 

the large size of the dataset. MP3 files have a high-

frequency cut-off adapted to the limits of human hear-

ing. Between 30 Hz and 15.7 kHz the LTAS of a 

PCM-encoded track and an MP3 version of that track 

are fairly similar. We therefore performed our analy-

sis in this frequency range. To verify the similarity, 

we calculated the absolute difference in LTAS of 30 

PCM-encoded tracks and the same tracks converted 

to MP3 files (192 kHz). The same settings were used 

for the computation of LTAS and conversion to a log-

frequency spectrum as outlined in Section 2.2 and 3.2. 

The mean absolute change in LTAS over the fre-

quency bins was just below 0.06 dB on average for 

the 30 tracks, which we regard as an acceptably small 

range of deviation. 

 

2.2  Calculating long-term average spectrum 

The LTAS was calculated for each mixture with ioSR 

Matlab Toolbox [16]. First, the short-term frequency 

transform (STFT) was calculated for both of the ste-

reo channels, using a window size of 4096 samples 

(approx. 93 ms at the 44.1 kHz sample rate used), and 

a hop size of 2048 samples (approx. 46 ms). The mean 

power spectral density (PSD) of each channel was 

subsequently calculated from each spectrogram. The 

loudness standard specification ITU-R BS.1770-4 

[17] contains a second stage weighting curve, which 

resembles C-weighting for loudness measurements. 

A filter, FITU, was computed as the element-wise 

power of the frequency response derived from the fil-

ter coefficients of this weighting curve. The normal-

ized PSD (PSDN) was then computed using the filter 

FITU    

PSDN = 
PSD

PSD ∙ FITU
 ,                    (1) 

where ∙ represents the dot product that results in a sca-

lar used as the normalization factor. The filtering dur-

ing loudness normalization does not affect the relative 

sound level of the different frequency bins in each 

track, so the mean LTAS computed in Section 3.1 is 

unaffected in this regard. It will however have a small 

effect on the standard deviation and order statistics, 

as the LTAS of songs with a lot of sub-bass, for ex-

ample, will be normalized to a different level. 

 

At this point, each song was represented by a vector 

of 2049 frequency bins (PSDN), covering the range of 

0-22050 Hz. We combined the vectors of all 12345 

mixtures to form the 12345×2049 matrix M. In earlier 

works, it was shown that the average spectrum will be 

influenced by tonal harmonics in the upper frequen-

cies [8]. This effect is a reflection of common keys 

(and/or pitches) in western music. To remove these 

peaks and make the average spectrum less affected by 

tonality, we included an adjunct processing step 

where M was smoothed across frequency. The power 

spectrum was in this step smoothed by a Gaussian fil-

ter with a -3 dB-bandwidth of 1/6th of an octave (one-

sixth octave bands). This bandwidth is somewhat nar-

rower than that of previous studies (one-third octave 

bands), a deliberate choice to ensure that subtle vari-

ations in the LTAS are retained. The standard devia-
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tion 𝜎 for the Gaussian at each frequency F was ob-

tained from the bandwidth b = 1/6 according to the 

equation used in the ioSR Matlab Toolbox [16] 

𝜎 =
Fb
π  .                                (2) 

The filtered and unfiltered versions of M were both 

converted to signal level by computing the log-spec-

trum, LTAS = 10 log
10

PSDN. By converting to signal 

level before averaging over songs, the influence from 

spectral bins of the different tracks will be more di-

rectly connected to their perceived loudness. 

2.3  Harmonic/percussive source separation 

In order to measure the effect of the amount of per-

cussion in the audio, we first performed source sepa-

ration on both stereo channels of the tracks, and then 

calculated the RMS of the percussive waveform in re-

lation to the unfiltered waveform. The harmonic/per-

cussive source separation (HPSS) is a two-step pro-

cedure that was initially developed for tracking the 

rhythmical structure of music, and it has been de-

scribed in more detail previously [18].  

 

In the first step, median filtering is applied to a spec-

trogram of the audio computed from the STFT, as 

suggested by FitzGerald [19]. Harmonic sounds are 

detected as outliers when filtering in the frequency di-

rection, and percussive sounds are detected as outliers 

when filtering in the time-direction. The harmonic 

and percussive parts of the spectrogram (H and P) are 

then used to create soft masks with Wiener filtering. 

For the harmonic mask (MH), the ith frequency of the 

nth frame is 

            MHi, n
=

Hi, n
 2

Hi, n
 2 +Pi, n

 2  .            (3) 

The element-wise (Hadamard) product between the 

masks and the complex original spectrogram �̂� is then 

computed, resulting in the complex spectrograms 

�̂�and P̂ [19]. These spectrograms are then inverted 

back to the time domain with the inverse STFT, pro-

ducing a harmonic and a percussive waveform.  

 

In the second step, the percussive waveform is filtered 

again with a similar procedure, to remove any traces 

of harmonic content such as note starts in the bass 

guitar or vibratos from the vocals. Here, the constant-

Q transform (CQT) is applied to compute the spectro-

gram [20]. With the log-frequency resolution of the 

CQT it becomes possible to remove the harmonic 

traces, as the frequency resolutions is high enough to 

discern between, for instance, the bass guitar and the 

kick drum in the lower frequencies, and low enough 

in the higher frequencies to accurately detect the 

higher harmonics of vocal vibrato. We used the same 

settings for the frequency resolution (60 bins per oc-

tave) and the length of the median filter used for fil-

tering across the frequency direction (40 bins) as pro-

posed in the earlier study [18]. These settings were 

established as preferable for filtering out harmonic 

traces. A clean percussive waveform is finally 

achieved by applying the inverse CQT (ICQT) to the 

filtered complex spectrogram. 

 

After applying source separation, we estimated how 

much percussion each audio file contained, the per-

cussive level (Lperc), by computing the RMS of both 

the clean percussive waveform (CP) and the original 

waveform (O), and then computing the difference in 

signal level 

Lperc = 20 log
10

CPRMS

ORMS
 .                   (4) 

 

For tracks where Lperc is higher (closer to 0 dB), the 

audio contains more percussion, whereas a lower 

value corresponds to less percussion. In Figure 1 we 

plot a histogram of Lperc-values for the dataset. Values 

range from around -30 dB to -5 dB, with a mean of 

about -15 dB. 

 
Figure 1. A histogram of Lperc-values for the dataset. 

Edge bins include all tracks beyond the edges.  
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3 Analysis of LTAS in the Dataset 

3.1  Mean LTAS and variations in LTAS 

To what extent does LTAS vary in the dataset? To 

explore this, we computed both the mean LTAS as 

well as the standard deviation and order statistics 

across all songs of the whole dataset from M (the ma-

trix previously computed in Section 2.2). Figures 2-3 

show mean and standard deviation of the LTAS, with 

and without one-sixth octave smoothing. 

 

The raggedness in the frequency response stems from 

the partials of harmonic instruments. These congre-

gate at certain frequencies, partly due to certain keys 

and tones being more commonly used than others in 

the music. By smoothing the LTAS, the influence of 

key/tonality is removed. Note that in Figure 2 of mean 

LTAS, the sound level increases up to about 100 Hz, 

from where the spectrum exhibits a slope which in-

creases in steepness for higher frequencies.  

Figure 3 shows the standard deviation of the dataset, 

which is the highest in the low and high frequencies. 

It is the lowest in low-mid frequencies (200-1000 Hz) 

and also rather low in the high-mid frequencies 

(1-4 kHz). These frequencies (200 Hz – 4 kHz) are 

generally used as the range of telephony, since they 

are the most important frequencies for speech intelli-

gibility [21]. The fundamental frequencies of most in-

struments that perform the lead melody or provide the 

chord accompaniment belong to the low-mid frequen-

cies, and these instruments (including the voice) will 

  

Figure 2. The mean LTAS (blue) and the smoothed 

mean LTAS (red) of the whole dataset. The 

smoothed LTAS was computed for each track of the 

dataset was with a 1/6-octave Gaussian filter.  

 
Figure 3. The standard deviation for the LTAS of the 

whole dataset (blue), and the standard deviation for 

the LTAS of the smoothed tracks (1/6-octave Gauss-

ian filter) of the whole dataset (red).  

usually have harmonics in the high-mid frequencies. 

A simple interpretation is thus that these frequencies 

contain the most important information in popular 

music, just as they do in speech, while the presence 

of instruments that cover the low- and high-end of the 

spectrum is not as critical. We observe that smoothing 

reduces the standard deviation the most in the mid fre-

quencies where the influence of harmonic partials is 

the strongest. One implication is that comparisons be-

tween songs will be much more relevant in the mid 

frequencies if the LTAS is smoothed.  

 

To study variations across frequency more closely, 

we computed order statistics for each frequency bin 

of M. This was done by sorting each column of M 

(across songs) and computing percentiles. The LTAS 

between the 3rd and the 97th percentile for each fre-

quency bin is shown in Figure 4. 

 

The larger variance at low frequencies (up to 200 Hz) 

that was shown in Figure 3 is also visible in Figure 4 

of order statistics. It is interesting to note that the 

higher variance in these frequencies are to a larger ex-

tent due to a lower sound level in the percentiles be-

low 40. The reason is probably that many songs lack 

instruments that have substantial energy in the low 

frequencies. One implication for automatic equaliza-

tion is that when there is a big difference between the 

mean LTAS of the dataset and the LTAS of a specific 

track in the bass, deviations below the mean are gen-

erally less alarming. For these frequencies, deviations 

of up to around 10 dB are not uncommon. 
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3.2  An equation for LTAS in popular music 

To be able to describe the mean LTAS of popular mu-

sic with a compact representation, an equation was 

fitted to the smoothed mean LTAS of the dataset. If 

the fitting is done directly on the LTAS-vector, the 

bass frequencies will be represented by only a few 

bins, and the fitting will as a consequence over-em-

phasize the importance of the high frequencies. We 

therefore converted the vector to log-frequency by 

sampling the mean LTAS from logarithmically 

spaced frequency bins in the range of 30 Hz – 15.7 

kHz, using 60 bins per octave. The logarithmically 

spaced frequency vector x had 543 bins. Noting that 

the mean LTAS in Figure 2 rises until bin x = 100 (94 

Hz), and then falls, we decided to do one quadratic 

fitting for the bass frequencies (x = 1-100) and one 

quadratic fitting for the rest of the spectra (x = 100-

543). The two fittings were then adjusted to intersect 

(to have identical sound level) at bin 100. The result 

is shown in Figure 5.  

The quadratic fitting in the bass frequencies was 

                             𝑦1 = 𝑝1𝑥2 + 𝑝2𝑥 + 𝑝3,            
 𝑝1 = 0.000907,  𝑝2 = 0.256,  𝑝3 = −32.942,   (5) 

 

and the quadratic fitting for the mid and high frequen-

cies was 

                             𝑦2 = 𝑝1𝑥2 + 𝑝2𝑥 + 𝑝3,             
𝑝1 = − 0.000183,   𝑝2 = 0.0213,   𝑝3 = −16.735. (6)  

A linear fitting was also done for the two frequency 

ranges, primarily to calculate the spectrum slope of 

 
Figure 5. Two quadratic fittings (blue and black) 

overlaying the mean LTAS (grey).  
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Figure 4. The variation in sound level between different songs, shown as percentiles of the 

LTAS of all the tracks in the dataset.  
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the high frequencies, and the result was a slope of 

5.79 dB/octave from 94 Hz to 15.7 kHz. It is however 

evident from Figure 5 that the quadratic fittings are a 

better fit for the mean LTAS curve. It reduced the 

norm of residuals in 𝑦2 by a factor of 4.1 in relation 

to the linear fitting. Computing the derivative of Eq. 6 

produces an equation from which the spectrum slope 

can be extracted directly 

𝑦′
2

= 2 𝑝1𝑥 + 𝑝2, 

𝑝1 = − 0.000183,      𝑝2 = 0.0213.           (7)  

The spectrum slope at different octaves is shown in 

Table 1.  

 

Center freq. x (log bin) Slope - dB/Oct 

200 Hz 165.22 -2.350 

400 Hz 225.22 -3.668 

800 Hz 285.22 -4.985 

1.6 kHz 345.22 -6.303 

3.2 kHz 405.22 -7.621 

6.4 kHz 465.22 -8.938 

Table 1. The slope of the mean LTAS of popular 

music expressed in dB/octave at different center fre-

quencies. 

The slope steepens with frequency, with more nega-

tive slopes toward the higher frequencies. The results 

when the center frequency is 800 Hz are in line with 

the slope of 5 dB/octave observed by Pestana et al. [8] 

(in that study for the range of 100 Hz to 4 kHz). 

4 Relationship Between LTAS and the 
Percussiveness of Music Audio 

4.1  Variations in frequency response  

As noted in the introduction, the mean LTAS of dif-

ferent genres varies. For example, hip-hop and elec-

tronic music have a higher sound level at both low- 

and high frequencies than jazz and folk music, which 

are louder (relatively) in the mid frequencies [8]. In 

the Introduction, our hypothesis was that these differ-

ences are not directly related to genre per se, but ra-

ther reflect the relative loudness of the percussive in-

struments in the musical mixture. In this Section, the 

relationship between the computed Lperc from Section 

2.3 and the LTAS computed in Section 3 is explored. 

 

First, we will show how the Lperc relates to LTAS. To 

visualize the relationship, the smoothed LTAS vec-

tors of the tracks were sorted based on their corre-

sponding Lperc to form the 12345×2049 matrix MS. 

Then, MS was divided into 11 groups so that each 

group consisted of about 1122 tracks with neighbor-

ing Lperc-values. The mean LTAS for the tracks of 

each group was finally computed. The mean Lperc of 

each group is shown in Table 2, and the relationship 

in LTAS between groups is plotted in Figure 6. 

Table 2. Mean Lperc for the 11 groups that we calcu-

late the average LTAS from. 

As seen in Figure 6, tracks with higher Lperc on aver-

age have a higher loudness in the low and high fre-

quencies. The variation in LTAS between songs with 

a different percussive prominence has a similar char-

acteristic as the variation in LTAS between genres 

with a different percussive prominence found in [8]. 

To study this relationship closer, the LTAS-curves 

were normalized relative to the sound level in group 

6. This is shown in Figure 7. As seen in the Figure, 

the relationship seems to be consistent across all 

groups, i.e. a group with a higher Lperc than another 

group also always had a higher energy in the bass and 

high frequencies.  

 

Figure 6. The mean LTAS of the 11 groups, consist-

ing of tracks with neighboring Lperc-values (see Ta-

ble 2). Brighter (magenta) means more percussion.  

Group 1 2 3 4 5 6 

Mean Lperc -23.1 -19.5 -18.0 -16.9 -16.1 -15.3 

Group 7 8 9 10 11  

Mean Lperc -14.5 -13.8 -12.9 -11.9 -9.8  
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Figure 7. The variation in mean LTAS for the 11 

groups of tracks with similar Lperc-values . The mean 

LTAS-curves were normalized relative to the mean 

LTAS of group 6.  

4.2  An Lperc-invariant range for measure-
ments of spectrum slope 

Observing the LTAS-curves in Figures 6-7, it seems 

like there exists a frequency in the bass for which the 

interrelationship between LTAS-levels of the differ-

ent groups is the same as in a frequency in the treble. 

This would then translate to an identical spectrum 

slope for the groups, or in other words, a range for 

which the spectrum slope is independent of percus-

sive prominence. Such frequency range-estimates 

could be useful for establishing if a track conforms to 

a desirable spectrum slope, without having to con-

sider the amount of percussion in the track. We there-

fore tried to compute the optimal range in the fre-

quency spectrum of the groups to get as similar a 

slope as possible.  

 

The spectrum slope of the mean LTAS of the 11 

groups from Section 4.1 was computed, while iterat-

ing over different frequency pairs x1 and x2, where x1 

was set to the range of 60-240 Hz and x2 was set to 

the range of 1.25-10 kHz. To get a higher resolution 

for x1, the log-frequency LTAS-curves described in 

Section 3.2 were used for both x1 and x2. In the anal-

ysis, each frequency pair generated a vector of 11 

slopes (dB/octave), and we computed the standard de-

viation of this vector. The x1 and x2-pair that mini-

mized the standard deviation was then selected. The  

  
Figure 8. The variation in standard deviation be-

tween the spectrum slopes of the 11 Lperc-groups for 

the frequencies x1 and x2. The standard deviation is 

minimized at x1 = 89 Hz and x2 = 4.5 kHz (white cir-

cle in the plot).  

standard deviation of the different frequency pairs is 

shown in Figure 8. The minimum standard deviation 

(0.055) was found for x1 = 89 Hz and x2 = 4.5 kHz, 

with a spectrum slope of 4.53 dB/octave. 

 

The implication of the analysis is that although the 

LTAS of popular music varies significantly for tracks 

with different percussive prominence, the average 

spectrum slope between around 90 Hz and 4.5 kHz is 

rather independent of the amount of percussion. 

5 Applications - Automatic Equalization 

The findings of this study can be utilized to perform 

automatic equalization on e.g. previously mixed au-

dio recordings. As outlined in Section 1.4, the dataset 

can be used as a collection of reference tracks that 

guides the equalization, similarly to how an audio en-

gineer uses reference tracks in the equalization pro-

cess. The reference tracks define a target spectrum, 

and the mix is altered to better coincide with the 

LTAS of the target. This type of frequency matching 

has been described in e.g. [11]. The characteristics of 

the reference tracks are however important; ideally, 

the tracks should be well balanced and have a similar 

instrumentation as the processed track. A clear rela-

tionship between LTAS and Lperc was shown in Sec-

tion 4. In this Section we will first use the smoothed 

mean LTAS as a target in automatic equalization, and 
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then utilize the computed Lperc of the dataset to auto-

matically refine the target individually for each track.  

 

The smoothed mean LTAS, defined as the target T, 

was used to compute the error Te for each frequency 

bin b across all N songs x of the dataset as 

𝑇𝑒𝑏 = √
1

𝑁−1
∑ (LTAS𝑥𝑏 − 𝑇𝑏)2𝑁

𝑥=1 .           (8) 

In this equation, LTAS𝑥𝑏 − 𝑇𝑏  is the difference in 

sound level for a frequency bin between a track x and 

the mean of all tracks, the target T. The vector Te is 

thus identical to the standard deviation of the LTAS 

for the dataset, previously shown in Figure 3. The er-

ror Te increases when T diverges from the LTAS of a 

track. Implicitly, each track is therefore assumed to 

have been previously equalized to the optimal LTAS 

for the mix, a sort of “ground truth”.  

 

The mean error across all frequencies Te ̅̅̅̅ , was 3.94 

dB on average for the dataset. How can the findings 

for the relationship between Lperc and LTAS from 

Section 4 be used to improve T, and thus reduce Te? 

In other words, to what extent can we find a better 

target LTAS for each song by incorporating infor-

mation about the amount of percussion in the music? 

This was investigated by using Lperc to compute the 

adjusted target LTAS 𝑇′, and then track the reduction 

in error. For each track x, a target Tx was derived by 

computing the weighted mean LTAS of all tracks 

with a similar Lperc. The weight wj that defined the 

contribution to the target LTAS from each track j was 

computed from the absolute distance in Lperc as 

wj = 1 −
|Lpercj

− Lpercx
| 

Lperc
lim .                     (9) 

The constant Lperc
lim  that defined the limit at which a 

track will contribute with a non-zero weight, was set 

to 1.5 dB. For Lperc
lim  < 1.5, the targets depended too 

much on random variations in the songs. For 

Lperc
lim  > 1.5, the algorithm could not to the same extent 

pick up local variations in LTAS due to Lperc. If there 

were less than 200 tracks with a weight wj above 0, 

Lperc
lim  was set to the absolute difference of the 200th 

closest weight before the computations of Eq. 9 was 

repeated. This ensured that enough examples were 

used for the tracks with a larger spread of Lperc.  

 

We used a leave-one-out cross-validation by setting 

the weight of track x to 0. Furthermore, negative val-

ues for wj were set to 0. The new target 𝑇𝑥
′ for each 

track was given as the weighted mean  

𝑇𝑥
′ = 

∑ wj×LTASj
12345
j

∑ wj
12345
j

 .                   (10) 

The new error Te' was computed as in in Eq. 8, but 

with 𝑇𝑏  replaced by 𝑇𝑥𝑏
′ . The resulting reduction of 

the mean error 𝑇�̅� − Te'̅̅̅̅   became 0.61 dB. The reduc-

tion 𝑇𝑒 − Te' across all frequencies is shown in Fig-

ure 9. 

 
Figure 9. The reduction of the error (Te) when the 

target 𝑇′ was based only on tracks with a similar 

Lperc. Deriving a target from these tracks reduced the 

error for the low frequencies (below 100 Hz) and for 

frequencies above 2 kHz. 

Figure 9 shows that the error is reduced for frequen-

cies below around 100 Hz and frequencies above 

around 2 kHz. In the mid frequencies, it is almost as 

accurate to use 𝑇 as 𝑇′ for the target. When compar-

ing the errors across tracks instead of across fre-

quency, we found, unsurprisingly, that the reduction 

in error was the greatest for the tracks with an Lperc 

that differed the most from the mean Lperc. We also 

conclude that tracks with a high Lperc generally had a 

lower error than tracks with a low Lperc. 

6 Discussion 

6.1  Analysis of the computed LTAS and its 
applications 

The smoothed mean LTAS is interesting to study in 

more detail. One reason for smoothing with one-sixth 

octave bands instead of the more common one-third 

octave bands is the potential to detect finer-grained 

variation in the mean LTAS curves. This narrower 

bandwidth should still give reliable results because of 
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the large size of the analyzed dataset. When looking 

closely at the curve in Figure 2, it is evident that the 

spectrum falls relatively sharply at around 4.5 kHz. 

This could be due to a decrease in sound level of the 

voice spectrum, caused by a pair of antiresonances 

from cavities in the piriform fossa [21, 22]. Another 

possible factor is that electric guitars without heavy 

distortion tend to fall in energy relatively sharply 

around this frequency. These guitars are common in 

popular music. The small dip at around 150 Hz in Fig-

ure 2 may also be explained by the voice spectrum in 

combination with the spectrum of other instruments. 

This region is slightly below where most energy of 

the vocals in popular music recede. Furthermore, it is 

slightly above where most of the energy of the bass 

and the kick drum is located. The absence of vocal 

energy may also be the reason for a sharp increase in 

variance below 150 Hz in Figures 3-4.  

 

By computing the percentiles of the LTAS of a large 

dataset of popular music, we have provided a com-

prehensive visualization of spectral distribution for 

the genre. This kind of representation can be very use-

ful for numerous tasks involving (primarily) the ma-

nipulation of the frequency spectrum during mixing 

or mastering. For example, when the spectrum of a 

track contains outliers in relation to the percentile ma-

trix, it would be wise to focus attention to the deviat-

ing frequencies. In this case, it is important to analyze 

the reason for the deviations. Can the spectral outliers 

be motivated by the musical arrangement, e.g. are the 

outliers unavoidable to be able to maintain a desirable 

spectrum for the instruments in the mix? If not, the 

outliers may be alleviated by adjusting the frequency 

spectra of the most relevant instruments in the mix, or 

by adjusting the equalization curve of the master track 

directly. In the latter case, the spectrum should just be 

adjusted partly towards the target, and only so for the 

frequencies that deviates significantly.  If the outliers 

however are unavoidable given the arrangement, at-

tention may instead be directed to the instrumenta-

tion; is it possible to add or remove any instruments 

in the arrangement? An extension would be to per-

form the analysis at different levels of smoothings of 

the LTAS. This would make it possible to identify 

different types of discrepancies, such as energy build-

ups in narrow bands, or a general imbalance between 

high and low frequencies.  

It is important to note that the ideas above are not 

meant to be limited to manual adjustment by e.g. the 

producer or mastering engineer. Instead, they should 

be regarded also as suggestions to establish new and 

more elaborate algorithms in automatic music pro-

duction. The idea of a balanced frequency response is 

one that pertain to many areas of music production. 

The success of LTAS-targets depends on an under-

standing of how the arrangement of a song calls for a 

specific target. By using the Lperc of the tracks, this 

was accounted for by relating percussive prominence 

to LTAS. Further progress could be made in this area 

by connecting additional features of the music to 

LTAS. This would allow an algorithm (or a human) 

to make more informed decisions with regard to 

equalization and/or arrangement. A key point though, 

is that the extracted features can only be linked to the 

LTAS of a track indirectly. If a feature is extracted 

which is directly related to LTAS, such as e.g. the 

spectrum slope, we would not, in any meaningful 

way, be able to distinguish the tracks that have a de-

viant but desirable LTAS from the tracks that have a 

deviant LTAS that should be adjusted. Reductions in 

Te would in this case not imply an improved equali-

zation. However, for this study, HPSS is not directly 

related to LTAS. Instead, the improvement in target 

LTAS stems from the fact that percussive instruments 

have a tendency to cover a broader frequency range 

than do harmonic instruments. The validity of using 

the Lperc will depend on the ability of the presented 

filtering technique (Section 2.3) to separate harmonic 

and percussive instruments. Here we conclude that 

the first stage of the filtering is a well-established 

method for audio source separation, and that the sec-

ond stage has been used successfully for varying tasks 

such as beat tracking [23] and the modeling of the 

perception of speed in music audio [24]. There may 

however be a slight propensity for the algorithm to 

overstate the amount of percussion for high frequen-

cies, as harmonic horizontal ridges in the spectrogram 

are harder to identify for these frequencies.  

6.2  Relationship between LTAS and Lperc 

In Section 5 it was noted that the songs with the low-

est Lperc generally had a higher error in the computed 

targets than songs with a high Lperc. The implication 

is that it is harder to establish a target LTAS for songs 



Elowsson and Friberg Long-term Average Spectrum in Popular Music 

 

AES 142nd Convention, Berlin, Germany, 2017 May 20–23 

Page 11 of 12 

without much percussion. This is perhaps not surpris-

ing, as sounds of non-percussive instrument will ap-

pear as horizontal ridges in a spectrogram, which 

translates to narrow peaks in the LTAS if they occur 

for longer periods of time in the track. One important 

factor related to this is the width of the Gaussian 

smoothing of the LTAS. If a broader smoothing had 

been used, the errors in the targets for tracks with a 

low Lperc would have been significantly reduced (the 

curve of mean LTAS of the dataset would however be 

less precise). As shown in Figure 3, the smoothing af-

fects the standard deviation in the mid frequencies the 

most. This is due to a smoothening of the narrow 

peaks from non-percussive instruments.   

 

The wide variation in LTAS of the 11 Lperc-groups is 

rather remarkable. To put the variation into perspec-

tive, it can be compared with the differences in LTAS 

between genres from the earlier study by Pestana et 

al. [8]. When accounting for an apparent lack of loud-

ness normalization of the tracks in that study, it is ev-

ident that the amount of percussion is a stronger factor 

for variation in LTAS than genre, even for such var-

ying genres as jazz and hip-hop (these were the two 

genres that varied the most in that dataset). In the In-

troduction we formulated a hypothesis, that LTAS is 

not directly related to genre; rather, it is an effect of 

variations in percussive prominence between genres. 

The analysis in section 4.1 validates the hypothesis, 

since a strong relationship between LTAS and Lperc 

was found, and since that relationship had the same 

characteristics as that between genres that are known 

to vary in the amount of percussion. Our conclusion 

then is that the variation in LTAS between genres is 

not directly related to inherent stylistic variations. In-

stead it is primarily a side-effect of variations in the 

amount of percussion between genres. Thus, for a da-

taset of hip-hop songs with very little percussion (to 

the extent that it still belongs to the genre) and a da-

taset of folk songs with a lot of percussion, a reversed 

relationship concerning LTAS would likely be ob-

served. 

6.3  Simple fittings of mean LTAS  

We have shown that the spectrum slope of popular 

music can be accurately approximated with a simple 

fitting. Generally, spectrum slope has previously been 

referred to as a linear function. But as shown, for a 

higher accuracy, a quadratic term should be intro-

duced to specify the increasing steepness of the slope 

with increasing frequency. The effect is rather signif-

icant; at 800 Hz the spectrum slope is around 5 dB/oc-

tave, but at 3.2 kHz the slope is 7.6 dB/octave. Fur-

thermore, in Section 4.2, we have calculated a fre-

quency range where the spectrum slope does not de-

pend on the amount of percussion in the tracks. It was 

found that between 89 Hz and 4.5 kHz, the spectrum 

slope was close to 4.53 dB/octave for all 11 Lperc-

groups. For future studies, the idea could be general-

ized to calculate a frequency range that gives the low-

est standard deviation in spectrum slope without try-

ing to account for any specific feature. 
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